
2023 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics October 22-25, 2023, New Paltz, NY

GENERAL PURPOSE AUDIO EFFECT REMOVAL

Matthew Rice∗ Christian J. Steinmetz∗ George Fazekas Joshua D. Reiss

Centre for Digital Music, Queen Mary University of London, UK

ABSTRACT

Although the design and application of audio effects is well under-
stood, the inverse problem of removing these effects is significantly
more challenging and far less studied. Recently, deep learning has
been applied to audio effect removal; however, existing approaches
have focused on narrow formulations considering only one effect
or source type at a time. In realistic scenarios, multiple effects are
applied with varying source content. This motivates a more general
task, which we refer to as general purpose audio effect removal. We
developed a dataset for this task using five audio effects across four
different sources and used it to train and evaluate a set of existing ar-
chitectures. We found that no single model performed optimally on
all effect types and sources. To address this, we introduced RemFX,
an approach designed to mirror the compositionality of applied ef-
fects. We first trained a set of the best-performing effect-specific
removal models and then leveraged an audio effect classification
model to dynamically construct a graph of our models at inference.
We found our approach to outperform single model baselines, al-
though examples with many effects present remain challenging.

Index Terms— audio effects, deep learning, audio engineering

1. INTRODUCTION

Audio effects are signal processing devices used to shape sonic
characteristics and they play a central role in audio production with
applications in music, film, broadcast, and video games [1]. While
there is a mature body of work for the design and implementation
of audio effects [2], the inverse problem of audio effect removal is
more challenging. With the rise of music source separation, interest
in remixing, manipulating, and re-purposing recorded audio content
has continued to grow [3, 4]. Audio effect removal unlocks further
control over remixing content and also facilitates more powerful au-
dio effect style transfer applications [5, 6]. In addition, audio effect
removal also has applications for data generation, which could im-
prove source separation and automatic mixing systems [7, 8], and
could also be useful in educational contexts, enabling students to
better understand the techniques of professional audio engineers.

Previous systems for audio effect removal rely on traditional
signal processing methods that target specific effects such as dis-
tortion [9, 10], compression [11], and reverberation [12]. How-
ever, these approaches require specialized techniques for each ef-
fect and make strong assumptions about the effect implementation,
limiting their generality. More recently, deep learning has been ap-
plied to this task, enabling a more general and powerful data-driven
approach. Nonetheless, existing systems are still narrow in their
scope, addressing only a small number of effects such as distor-
tion [13, 14] or reverberation [15, 16]. Although some work on
speech enhancement has considered the removal of audio effects,

*These authors contributed equally to this work.

...

Effect Detector

...

... "Effected"
Input

Estimate

Effect set

Removal set

Detected Audio Effects

...

...

Effect Removal Models

RemFX

Data Generation

Figure 1: We introduce the task of general purpose audio effect
removal, which considers removing multiple audio effects from the
same recording and we propose RemFX, a compositional approach
that dynamically combines effect-specific removal models.

which can be seen as corruptions of speech [17, 18], these ap-
proaches are limited in that they consider only speech and operate
at relatively low sample rates (≤ 16 kHz). This limits their applica-
bility in post-production where high-fidelity and support for a wide
range of content is required. In addition, previous work has focused
on removing only one effect at a time, whereas real-world audio of-
ten has multiple effects present simultaneously [19]. It is common
to chain together multiple audio effects to achieve a specific result,
which significantly complicates the task of removing these effects.

We have three main contributions. Firstly, we address the short-
comings of previous research by introducing a more comprehensive
task we name general purpose audio effect removal. Secondly, we
conduct a series of experiments with our benchmark datasets on
single and multiple effect removal. We discover that some architec-
tures are more effective at removing certain effects and that certain
effects are more challenging than others. We also find that when
using single models for multiple effect scenarios, performance is
degraded. Thirdly, to overcome this, we introduce RemFX, which
we demonstrate surpasses baselines by dynamically composing pre-
trained effect-specific models at inference. Despite improved per-
formance, our results suggest more work is necessary in cases with
many effects applied at the same time. We provide listening exam-
ples, datasets, code, and pretrained models to aid further research.1

1https://csteinmetz1.github.io/RemFX

ar
X

iv
:2

30
8.

16
17

7v
1 

 [
cs

.S
D

] 
 3

0 
A

ug
 2

02
3

https://csteinmetz1.github.io/RemFX


2023 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics October 22-25, 2023, New Paltz, NY

2. AUDIO EFFECT REMOVAL

Audio effects can be represented by a function

y = f(x;ϕ), (1)

where x ∈ RT denotes the monophonic audio input with T sam-
ples, while ϕ ∈ RP represents the device operation with P parame-
ters. The function f takes x as input and produces an output signal
y ∈ RT , which we refer to as the “effected” signal.

In the basic audio effect removal task, the objective is to con-
struct a function g that estimates the signal x̂ given the effected y

x̂ = g(y). (2)

While knowledge of the device parameters ϕ would be helpful, they
are generally unknown and therefore not considered. It should be
noted that achieving a perfect reconstruction of the original signal is
generally not possible due to the uncertainty surrounding the ground
truth given only the effected signal without access to the original
device or its parameters. Therefore, our aim is to reduce the percep-
tual difference between the signals such that when a listener hears
the output x̂, they perceive it as close to the original signal x.

In audio production, there is a range of effects including time-
based effects such as reverberation and delay, dynamic processing
such as distortion and compression, spectral effects such as equal-
ization, and modulation effects such as chorus, tremolo, flanger, and
phaser [2]. To address this, we represent a set of N audio effects
as a set of functions F = {f1, f2, ..., fN} and aim to construct a
removal function g

x̂ = g(fi(x;ϕi)), (3)
that can recover an estimate of the original signal x̂ after the appli-
cation any effect fi for i ∈ 1, 2, ..., N . However, this task is further
complicated by the fact that multiple effects can be applied to the
same recording in order to achieve a desired sound [19]. This can be
represented by a composition of multiple effect functions, each with
its own control parameters. It is important to note that the order of
effects can vary and that each effect may or may not be present in
any given example, which further complicates the task.

Motivated by this, we formulate the task of general purpose au-
dio effect removal. We begin by defining a set of N functions F =
{f1, f2, ..., fN} that represent a group of common audio effects.
We also define a dataset D = {x(j)}Jj=1 containing J clean audio
recordings where no effects have been applied. To generate effected
recordings, we randomly sample the number of effects to apply as
K ∼ U([0, N ]∩Z). Then, we sample K functions without replace-
ment from F to produce a subset FK = {fi1 , fi2 , . . . , fiK} ⊆ F ,
where i1, i2, ..., iK represent the indices of elements in F . We then
compose the effects in FK following the order in which they were
drawn and sample continuous parameters ϕik ∼ U(aik , bik ) for
the k-th effect over a predefined range [aik , bik ]. We represent the
composition of these K functions with random parameters as

y(j) = fK(fK−1(. . . f2(f1(x
(j);ϕi1);ϕi2) . . . ;ϕiK−1);ϕiK ),

(4)
where y(j) is the resulting output of processing x(j), the j-th ex-
ample from the dataset. Our goal is to construct a function g such
that, given a signal processed by a randomly sampled composition
of effects, it will produce an estimate of the recording x̂(j) without
the presence of effects, minimizing a loss function L(x̂(j),x(j)).
While in some cases effects may be applied in parallel or using more
complex routing, our formulation that considers sequential effects
captures much of the complexity in real-world audio effect removal.

3. APPROACH

As introduced in Sec. 2, the general purpose audio effect removal
task involves removing any number of audio effects applied to a
recording from a set of possible effects. One straightforward ap-
proach to address this task could involve using a single neural net-
work model to remove all effects at once with the model trained to
regress the original signal. We refer to these approaches as mono-
lithic networks since they use a singular model to remove a range
of effects. However, due to the combinatorial and compositional
nature of the audio effect removal task, we hypothesize that using
a monolithic network will not produce adequate results. Given N
different effects and assuming that each effect is applied at most
once, the total number of possible effect configurations is given
by

∑N
k=0 P (N, k) =

∑N
k=0

N !
(N−k)!

, the sum of all permutations
across each number of chosen effects k ∈ 1, 2, ..., N . Beyond the
combinatorial nature of the problem, it is also likely that there will
be a significant variance in the difficulty of training examples since
some examples will contain N effects while others may contain
none. This may lead the network to focus more on difficult exam-
ples that contribute to higher training error. Furthermore, this may
disrupt training, potentially harming performance on simpler cases.

3.1. Compositional audio effect removal

To address the limitations of monolithic networks in this task,
we propose a compositional approach, which we name RemFX.
As shown in Fig. 1, our approach is designed to mirror the pro-
cess of applying a series of audio effects. We achieve this by
first constructing a set of N audio effect-specific removal models
G = {g1, g2, . . . , gN}. We choose the best-performing model ar-
chitecture for each effect removal model based on our initial exper-
iments. We train each of these networks with a separate dataset to
remove a different effect from the effect set F = {f1, f2, . . . , fN}.

After constructing our set of removal models G, we then intro-
duce an audio effect detection network z = gD(y) where z ∈ RN .
This network is trained in a separate task to detect the presence of
any effect from F in the effected recording y, which we frame as
a multi-label classification task. At inference, we apply a thresh-
old t to the logits z = (z1, z2, ..., zN ) from gD , selecting all effects
where z ≥ t. This enables us to construct a series connection of our
effect-specific removal models from G and then apply this compos-
ite function to remove any effects, dynamically adapting computa-
tion at inference. We do not estimate the order since we found that
random ordering performs similarly to the true ordering (Sec. 5.5).

During inference, our effect-specific models will encounter ef-
fects in the input signal that they are not trained to remove. To
improve robustness in these scenarios, we propose an approach
called FXAug. When training an effect-specific removal model gn
to remove an effect fn from the effect set F , we apply additional
distractor effects from the set F \ {fn}. In general, we sample
Kd ∼ U([0, N−1]∩Z) distractor effects and apply them with ran-
domly sampled parameters before applying the effect to be removed
fn. We then use the intermediate signal containing the distractor ef-
fects as the target signal during training, instead of the clean signal.

Compared to monolithic approaches, our approach offers sev-
eral benefits: it allows for adaptive computation during inference,
running only the removal networks of effects that are present, en-
ables expansion to more effects without requiring complete retrain-
ing of existing removal models, and facilitates using different archi-
tectures specialized for the removal of each effect type.



2023 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics October 22-25, 2023, New Paltz, NY

Approach Params DST DRC RVB CHS DLY AVG

SI-SDR STFT SI-SDR STFT SI-SDR STFT SI-SDR STFT SI-SDR STFT SI-SDR STFT

Input - 16.37 0.654 15.57 0.779 9.30 0.866 8.31 0.539 11.28 0.742 12.17 0.716

DPTNet 2.9 M 22.38 0.798 16.95 0.810 9.817 1.128 8.50 0.870 11.768 0.957 13.89 0.913
UMX 6.3 M 17.38 0.505 15.39 0.534 11.39 0.706 8.88 0.534 12.87 0.688 13.18 0.593
DCUNet 7.7 M 16.27 0.528 13.80 0.591 12.13 0.645 11.08 0.504 13.48 0.616 13.35 0.577
TCN 10.0 M 18.47 0.632 14.49 0.733 13.25 0.804 8.452 0.669 11.23 0.882 13.18 0.744
HDemucs 83.6 M 24.36 0.402 20.08 0.422 13.59 0.735 9.828 0.580 13.54 0.671 16.30 0.562

Table 1: SI-SDR (↑) and Multi-resolution STFT error (↓) for effect-specific models trained to remove one effect across five architectures.

Approach Train DST DRC RVB CHS DLY AVG

HDemucs Single 0.232 0.377 0.124 -0.061 0.069 0.149
Multiple 0.099 0.217 0.031 -0.121 -0.048 0.036

DCUNet Single 0.096 0.202 0.212 0.027 0.127 0.133
Multiple 0.024 0.109 0.065 -0.067 0.026 0.032

Table 2: Multi-resolution STFTi (↑) for single effect models com-
pared to the same architecture trained to remove all five effects.

4. EXPERIMENTAL SETUP

Dataset — We source audio from four datasets: VocalSet [20]
for singing voice, GuitarSet [21] for acoustic guitar, DSD100 [22]
for bass guitar, and IDMT-SMT-Drums [23] for drums. We split
each set into train, validation, and test, ensuring there is no over-
lap between song, performer, or instruments, where applicable. We
resample to fs = 48 kHz and split audio into ∼5.5 sec chunks
(262144 samples). We fix the number of train, validation, and test
examples to 8 k, 1 k, and 1 k for each experimental configuration.
We generate effected audio by applying randomly sampled effects
and parameters using Pedalboard [24], following Sec. 2. Param-
eter ranges are selected heuristically to model real-world use cases.
After each effect, we loudness normalize the audio with a target of
−20 dB LUFS [25]. We consider five effects: Distortion (DST),
Dynamic range compression (DRC), Reverberation (RVB), Chorus
(CHS), and Feedback delay (DLY). This results in 12.1 h for train-
ing, 1.5 h for validation, and 1.5 h for testing per experiment.
Removal models — We consider five audio processing model ar-
chitectures in our experiments. These include, Hybrid Demucs [26],
DCUNet [27], DPTNet [28], TCN [29, 30], and UMX [31].
Detection models — Similar to past work in effect classifica-
tion [32, 33, 34], we consider convolutional architectures operating
on Mel spectrograms. As baselines, we train single linear layers
on top of a set of frozen pretrained audio representations, including
PANNs [35], wav2vec2.0 [36], and Wav2CLIP [37] (∗ in Table 3).
For comparison, we also train PANNs from scratch at fs = 48 kHz.
Training — All models are trained with the Adam optimizer. Re-
moval models are trained for 50 k steps with an initial learning
rate of 10−4 and weight decay of 10−3 using a batch size opti-
mal for each model on a single A100 GPU. Audio effect classifiers
are trained with a learning rate of 3 · 10−4 for 300 epochs using a
batch size of 64. In both cases, we use learning rate scheduling dur-
ing training, decreasing by a factor of 10 at 80% and 95% through
training, and gradient clipping with a value of 10. While classifiers
are trained with binary cross-entropy, removal models are trained
with a sum of two terms L = αLL1 + βLMR-STFT, with α = 100
and β = 1, where LL1 is the L1 distance in the time domain and
LMR-STFT is the multi-resolution magnitude STFT loss [38, 39].

Approach DST DRC RVB CHS DLY AVG

wav2vec2* [36] 0.720 0.710 0.776 0.651 0.662 0.704
Wav2CLIP* [37] 0.642 0.667 0.850 0.697 0.699 0.720
PANNs* [35] 0.681 0.681 0.841 0.705 0.730 0.732

PANNs 0.780 0.771 0.791 0.724 0.680 0.750
+ SpecAug 0.780 0.807 0.845 0.751 0.743 0.786

Table 3: Class-wise accuracy for the audio effect detection task.

5. EXPERIMENTS & RESULTS

5.1. Effect-specific models

We report SI-SDR [40] for performance in the time domain and the
multi-resolution STFT error for performance in the magnitude fre-
quency domain [38, 39]. We use “STFT” as shorthand to denote the
multi-resolution STFT error. In some cases, we also report SI-SDRi
and STFTi, which indicates the improvement in each metric in com-
parison to the input signal. We train one model for each architecture
across five effects, resulting in a total of 25 models for the task in
(2). As shown in Table 1, we found that no architecture performs
optimally across all removal tasks. Hybrid Demucs outperforms
others in distortion and compression, whereas DCUNet performs
better on chorus. Although the performance is similar for reverber-
ation and delay, STFT error suggests that DCUNet performs better
while SI-SDR scores are close. This aligns with our informal listen-
ing, however, it also reveals chorus and delay remain challenging to
remove even for the best-performing models.

5.2. Monolithic removal models

As a first step towards the general purpose audio effect removal
task, we train Hybrid Demucs and DCUNet as monolithic models to
remove multiple effects when only one effect is present at a time, as
in (3). We report the results in Table 2, comparing the performance
to the effect-specific models from the previous experiment. When
training to remove multiple types of effects, we observe that both
architectures perform worse as compared to when they are trained
to remove only a single effect. This provides evidence for our claim
in Sec. 3 that monolithic models may not produce adequate results.
5.3. Audio effect detection

We frame the audio effect detection task as N separate binary clas-
sification tasks, where one linear layer followed by a sigmoid gen-
erates a prediction for the presence of each effect. We report the
class-wise accuracy on held-out data in Table 3. We found superior
performance training PANNs from scratch as compared to adapt-
ing the pretrained models, and we observed a small benefit (+3.6%
accuracy) from SpecAugment. However, our results indicate the
multiple effect detection task could be further improved, as the best-
performing model achieves 78.6% accuracy across all effects.



2023 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics October 22-25, 2023, New Paltz, NY

Approach Params. N = 0 N = 1 N = 2 N = 3 N = 4 N = 5

SI-SDR STFT SI-SDR STFT SI-SDR STFT SI-SDR STFT SI-SDR STFT SI-SDR STFT

Input - Inf 0.000 11.52 0.689 6.24 1.131 3.29 1.508 1.31 1.799 -0.33 2.058

DCUNet 7.7 M 18.53 0.467 11.16 0.743 7.87 0.945 5.42 1.121 3.64 1.265 2.10 1.462
HDemucs-M 84 M 19.72 0.415 11.28 0.728 8.01 0.931 5.77 1.100 4.29 1.223 2.10 1.337
HDemucs-L 334 M 20.78 0.410 11.53 0.725 8.17 0.924 6.08 1.084 4.63 1.212 3.38 1.328
HDemucs-XL 751 M 20.31 0.406 11.54 0.713 8.32 0.902 6.19 1.064 4.73 1.190 3.38 1.312
RemFX Oracle ≤192 M Inf 0.000 16.99 0.486 10.91 0.762 7.51 0.994 5.40 1.170 3.47 1.360
RemFX All 192 M 21.99 0.234 10.26 0.841 8.44 0.939 6.46 1.084 4.71 1.225 2.99 1.418
RemFX Detect ≤192 M 87.54 0.068 16.67 0.495 10.47 0.786 6.96 1.050 4.80 1.247 2.61 1.486

Table 4: SI-SDR (↑) and MR-STFT error (↓) in general purpose audio effect removal across fixed number of audio effects N .

Effect Approach Single Effect w/ Distractors

SI-SDR STFT SI-SDR STFT

AVG
Input 12.17 0.716 10.60 0.692

Single Effect 16.28 0.612 14.71 0.580
+ FXAug 16.59 0.554 16.61 0.514

Table 5: Average SI-SDR (↑) and MR-STFT error (↓) across all
effects for single effect removal trained with and without FXAug.

5.4. Audio effect augmentation

We hypothesized that training effect-specific models with only one
effect during training would lead to degraded performance. To in-
vestigate this and the efficacy of our FXAug approach, we trained
a Hybrid Demucs model for each effect, with and without FXAug.
We evaluated with two test sets: one with only one effect and one
with up to four random distractor effects. We report the mean per-
formance across all five effect-specific models in Table 5. First, we
confirm that distractor effects harm performance for models trained
with only one effect (no FXAug). Second, this is remedied by
FXAug, which improves performance in the case of distractors, but
also in the case of single effects. Therefore, we use effect-specific
models trained with FXAug in our final RemFX system.

5.5. General purpose audio effect removal

In our final experiment, we investigated the performance of systems
on the general purpose audio effect removal task using our set of
audio effects, applying up to five at a time. We trained monolithic
Hybrid Demucs and DCUNet models and compared them against
variants of RemFX with results in Table 4. These include All: apply
all effect-specific models, Oracle: apply respective models given
ground truth labels of the effects that are present, and Detect: use
the audio effect classifier to determine these labels. For the effect-
specific models, we used Hybrid Demucs for distortion and com-
pression, and DCUNet for reverberation, delay, and chorus, along
with the best-performing classifier from Table 3, using a threshold
of t = 0.5. The ordering of the models was randomized for each
example, except for Oracle, which used the ground truth ordering.
Number of effects — The case of no effects, N = 0, exhibits one
of the benefits of RemFX, which will not process the input unless
audio effects are detected. On the other hand, the monolithic models
produced noticeable degradation across both metrics. For N = 1,
we found that monolithic models struggle, performing worse even
than the input across both metrics, while RemFX Oracle achieved a
significant improvement. Even RemFX Detect only had a small per-
formance dip (< 2%) and still outperformed the monolithic mod-
els. This trend is similar for N = 2. While the monolithic models

1 2 3 4 5
Number of effects

0

2

4

6 SI-SDRi

1 2 3 4 5
Number of effects

0.00

0.25

0.50

0.75 STFTi

DCUNet
HDemucs-XL
RemFX Detect
RemFX Oracle

Figure 2: Average SI-SDRi and STFTi across effects.

provided a small improvement, RemFX models were superior. As
the number of effects increases, the gap between RemFX and the
monolithic models decreases, as shown in Fig. 2. While RemFX
outperformed the baselines when fewer effects are present, all ap-
proaches exhibited degraded performance for N = 4 and N = 5,
indicating the difficulty of this task.
Model scale — To improve performance of monolithic models, we
attempted to further scale Hybrid Demucs. However, we observed
minimal improvement in SI-SDR (≤ 1.3 dB) and STFT (≤ 0.04)
across N , even when scaling to 751 M parameters. In comparison,
RemFX models performed better for N ≤ 3 and use fewer param-
eters, ranging from 0 to 192 M, depending on the detected effects.
Ordering & Detection — For RemFX Oracle, we compared using
ground truth and random ordering. We found a slight decrease in
SI-SDR (≤ 0.6 dB) and STFT (≤ 0.06) across N when using a
random ordering, leading us to conclude the use of random ordering
in our RemFX Detect model is an acceptable approach. We also
established the importance of the classifier, since RemFX All results
in a max decrease of 6.41 dB SI-SDR and 0.346 STFT.

6. CONCLUSION
We introduced a new task, general purpose audio effect removal,
and investigated several approaches to tackle it. Our findings sug-
gested that monolithic networks fail to generalize across a varying
number of effects; however, our RemFX system yielded improved
performance by combining an effect detection model with dynamic
construction of effect-specific removal models. While the results
are promising, our evaluation is limited in that we considered only
five effects, each with a single implementation, and without more
complex signal routing, such as parallel connections. Despite these
limitations, our method offers promising results in effect removal
and provides a direction for improved effect removal systems that
are scalable and applicable in real-world scenarios. We provide
code, datasets, and pretrained models to facilitate future work.

7. ACKNOWLEDGMENT
CS is supported by the EPSRC UKRI CDT in AI and Music (Grant
no. EP/S022694/1). Compute resources provided by Stability AI.



2023 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics October 22-25, 2023, New Paltz, NY

8. REFERENCES

[1] T. Wilmering, D. Moffat, A. Milo, and M. B. Sandler, “A his-
tory of audio effects,” Applied Sciences, vol. 10, no. 3, 2020.

[2] U. Zölzer et al., DAFX-Digital audio effects. John Wiley &
Sons, 2002.

[3] H. Yang, S. Firodiya, N. J. Bryan, and M. Kim, “Don’t sep-
arate, learn to remix: End-to-end neural remixing with joint
optimization,” in ICASSP. IEEE, 2022.

[4] H. Yang et al., “Upmixing via style transfer: a variational au-
toencoder for disentangling spatial images and musical con-
tent,” in ICASSP. IEEE, 2022.

[5] C. J. Steinmetz, N. J. Bryan, and J. D. Reiss, “Style transfer of
audio effects with differentiable signal processing,” Journal of
the Audio Engineering Society, 2022.

[6] J. Koo, M. A. Martinez-Ramirez, W.-H. Liao, S. Uhlich,
K. Lee, and Y. Mitsufuji, “Music mixing style transfer: A con-
trastive learning approach to disentangle audio effects,” arXiv
preprint arXiv:2211.02247, 2022.

[7] C. J. Steinmetz, “Deep learning for automatic mixing: chal-
lenges and next steps,” in MDX Workshop at ISMIR, 2021.

[8] M. A. Martı́nez-Ramı́rez, W.-H. Liao, G. Fabbro, S. Uhlich,
C. Nagashima, and Y. Mitsufuji, “Automatic music mixing
with deep learning and out-of-domain data,” in ISMIR, 2022.

[9] P. Záviška et al., “A survey and an extensive evaluation of
popular audio declipping methods,” IEEE Journal of Selected
Topics in Signal Processing, vol. 15, no. 1, 2020.

[10] A. Bernardini, A. Sarti, et al., “Towards inverse virtual analog
modeling,” in DAFx 2019, 2019.

[11] S. Gorlow and J. D. Reiss, “Model-based inversion of dynamic
range compression,” IEEE Transactions on Audio, Speech,
and Language Processing, vol. 21, no. 7, 2013.

[12] K. Lebart, J.-M. Boucher, and P. N. Denbigh, “A new method
based on spectral subtraction for speech dereverberation,”
Acta Acustica united with Acustica, vol. 87, no. 3, 2001.

[13] J. Imort, G. Fabbro, M. A. Martı́nez-Ramı́rez, S. Uhlich,
Y. Koyama, and Y. Mitsufuji, “Distortion audio effects: Learn-
ing how to recover the clean signal,” in ISMIR, 2022.

[14] E. Moliner, J. Lehtinen, and V. Välimäki, “Solving audio
inverse problems with a diffusion model,” arXiv preprint
arXiv:2210.15228, 2022.

[15] K. Saito, N. Murata, T. Uesaka, C.-H. Lai, Y. Takida, T. Fukui,
and Y. Mitsufuji, “Unsupervised vocal dereverberation with
diffusion-based generative models,” in ICASSP, 2023.

[16] N. Murata, K. Saito, C.-H. Lai, Y. Takida, T. Uesaka, Y. Mit-
sufuji, and S. Ermon, “Gibbsddrm: A partially collapsed gibbs
sampler for solving blind inverse problems with denoising dif-
fusion restoration,” arXiv preprint arXiv:2301.12686, 2023.

[17] J. Serrà, S. Pascual, J. Pons, R. O. Araz, and D. Scaini, “Uni-
versal speech enhancement with score-based diffusion,” arXiv
preprint arXiv:2206.03065, 2022.

[18] J. Su, Z. Jin, and A. Finkelstein, “HiFi-GAN: High-fidelity
denoising and dereverberation based on speech deep features
in adversarial networks,” in INTERSPEECH, 2020.

[19] A. Case, Sound FX: Unlocking the creative potential of
recording studio effects. CRC Press, 2012.

[20] J. Wilkins, P. Seetharaman, A. Wahl, and B. Pardo, “Vocalset:
A singing voice dataset.” in ISMIR, 2018.

[21] Q. Xi, R. M. Bittner, J. Pauwels, X. Ye, and J. P. Bello, “Gui-
tarset: A dataset for guitar transcription.” in ISMIR, 2018.

[22] A. Liutkus et al., “The 2016 signal separation evaluation cam-
paign,” in LVA/ICA, 2017.

[23] C. Dittmar and D. Gärtner, “Real-time transcription and sep-
aration of drum recordings based on nmf decomposition.” in
DAFx, 2014.

[24] P. Sobot, “Pedalboard,” Apr. 2023, 10.5281/zenodo.7817839.

[25] C. J. Steinmetz and J. D. Reiss, “pyloudnorm: A simple yet
flexible loudness meter in python,” in 150th Convention of the
AES, 2021.

[26] A. Défossez, “Hybrid spectrogram and waveform source sep-
aration,” arXiv preprint arXiv:2111.03600, 2021.

[27] H.-S. Choi, J.-H. Kim, J. Huh, A. Kim, J.-W. Ha, and K. Lee,
“Phase-aware speech enhancement with deep complex u-net,”
in ICLR, 2019.

[28] J. Chen, Q. Mao, and D. Liu, “Dual-path transformer net-
work: Direct context-aware modeling for end-to-end monau-
ral speech separation,” in INTERSPEECH, 2020.

[29] D. Rethage, J. Pons, and X. Serra, “A WaveNet for speech
denoising,” in ICASSP. IEEE, 2018.

[30] C. J. Steinmetz and J. D. Reiss, “Efficient neural networks for
real-time modeling of analog dynamic range compression,” in
152nd Convention of the AES, 2022.

[31] F.-R. Stöter, S. Uhlich, A. Liutkus, and Y. Mitsufuji, “Open-
unmix - a reference implementation for music source separa-
tion,” Journal of Open Source Software, vol. 4, no. 41, 2019.

[32] M. Stein, J. Abeßer, C. Dittmar, and G. Schuller, “Automatic
detection of audio effects in guitar and bass recordings,” in
128th Convention of the AES, 2010.

[33] H. Jürgens, R. Hinrichs, and J. Ostermann, “Recognizing gui-
tar effects and their parameter settings,” in DAFx, 2020.

[34] M. Comunità, D. Stowell, and J. D. Reiss, “Guitar effects
recognition and parameter estimation with convolutional neu-
ral networks,” Joural of the Audio Engineering Society, 2020.

[35] Q. Kong, Y. Cao, T. Iqbal, Y. Wang, W. Wang, and M. D.
Plumbley, “Panns: Large-scale pretrained audio neural net-
works for audio pattern recognition,” IEEE/ACM Transactions
on Audio, Speech, and Language Processing, vol. 28, 2020.

[36] A. Baevski, Y. Zhou, A. Mohamed, and M. Auli, “wav2vec
2.0: A framework for self-supervised learning of speech rep-
resentations,” NeurIPS, vol. 33, 2020.

[37] H.-H. Wu, P. Seetharaman, K. Kumar, and J. P. Bello,
“Wav2clip: Learning robust audio representations from clip,”
in ICASSP. IEEE, 2022.

[38] R. Yamamoto, E. Song, and J.-M. Kim, “Parallel Wave-
GAN: A fast waveform generation model based on genera-
tive adversarial networks with multi-resolution spectrogram,”
in ICASSP, 2020.

[39] C. J. Steinmetz and J. D. Reiss, “auraloss: Audio focused loss
functions in PyTorch,” in DMRN+15, 2020.

[40] J. Le Roux, S. Wisdom, H. Erdogan, and J. R. Hershey, “Sdr–
half-baked or well done?” in ICASSP. IEEE, 2019.


	 Introduction
	 Audio effect removal
	 Approach
	 Compositional audio effect removal

	 Experimental Setup
	 Experiments & Results
	 Effect-specific models
	 Monolithic removal models
	 Audio effect detection
	 Audio effect augmentation
	 General purpose audio effect removal

	 Conclusion
	 ACKNOWLEDGMENT
	 References

